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Outline

• Principal components analysis
• Cluster analysis

The use of big data in official statistics



Both using a nxp data matrix, where the xij

generic entry is the j-th achievement for unit i

Goal: data reduction 

The use of big data in official statistics



The use of big data in official statistics



Both techniques are based on hypotheses,
maths, geometrical interpretations, and both of
them have many ways to get to the point.

Hard to define/decide what is the “best” solution

The use of big data in official statistics



PCA: it works (mostly) on variables
Cluster: it works (mostly) on units

The two methods can be combined 

The use of big data in official statistics



Principal Component Analysis
(PCA)

probably the most widely-used and well-known 
of the “standard” multivariate methods
invented by Pearson (1901) and Hotelling
(1933)

(“factor analysis” is very similar to PCA).



Data Reduction
• summarization of data with many (p) 

variables by a smaller set of (k) derived 
(synthetic, composite) variables.
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Data Reduction
“Residual” variation is information in A that is not 
retained in X 

balancing act between
clarity of representation, ease of understanding
oversimplification: loss of important or relevant 
information.



Principal Component Analysis
(PCA)

takes a data matrix of n objects by p variables, 
which may be correlated, and summarizes it by 
uncorrelated axes (principal components or 
principal axes) that are linear combinations of 
the original p variables

the first k components display as much as 
possible of the variation among objects.



Geometric Rationale of PCA
objects are represented as a cloud of n points in a 
multidimensional space with an axis for each of 
the p variables
the variance of each variable is the average 
squared deviation of its n values around the mean 
of that variable.
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Geometric Rationale of PCA
• degree to which the variables are linearly 

correlated is represented by their 
covariances.



Geometric Rationale of PCA
objective of PCA is to rigidly rotate the axes of this p-
dimensional space to new positions (principal axes) that 
have the following properties:

ordered such that principal axis 1 has the highest 
variance, axis 2 has the next highest variance, .... , and 
axis p has the lowest variance

covariance among each pair of the principal axes is 
zero (the principal axes are uncorrelated).



Geometric Rationale of PCA



Generalization to p-dimensions
if we take the first k principal components, they define the k-
dimensional “hyperplane of best fit” to the point cloud of the 
total variance of all p variables:

PCs 1 to k represent the maximum possible proportion of 
that variance that can be displayed in k dimensions
i.e. the squared Euclidean distances among points calculated 
from their coordinates on PCs 1 to k are the best possible 
representation of their squared Euclidean distances in the 
full p dimensions. 



Covariance vs Correlation
• using covariances among variables only makes sense if 

they are measured in the same units
• even then, variables with high variances will dominate 

the principal components
• these problems are generally avoided by standardizing 

each variable to unit variance and zero mean. 
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Covariance vs Correlation
covariances between the standardized variables are 
correlations

after standardization, each variable has a variance of 1

Balancing between the two approaches



The Algebra of PCA

Eigenvector
each eigenvector consists of p values which 
represent the “contribution” of each variable to the 
principal component axis 
eigenvectors are uncorrelated (orthogonal) 

their cross-products are zero.

u1 u2

X1 0.7291 -0.6844
X2 0.6844 0.7291

Eigenvectors



The Algebra of PCA

coordinates of each object i on the kth principal axis, 
known as the scores on PC k, are computed as

where Z is the n x k matrix of PC scores, X is the n x p 
centered data matrix and U is the p x k matrix of 
eigenvectors.

pipkikikki xuxuxuz +++= 2211



The Algebra of PCA

• variance of the scores on each PC axis is 
proportional to the corresponding eigenvalue for 
that axis

• the eigenvalue represents the variance displayed 
(“explained” or “extracted”) by the kth axis

• the sum of the first k eigenvalues is the variance 
explained by the k-dimensional ordination.



Axis Eigenvalue % of 
Variance

Cumulative % 
of Variance

1 5.855 36.60 36.60
2 3.420 21.38 57.97
3 1.122 7.01 64.98
4 1.116 6.97 71.95
5 0.982 6.14 78.09
6 0.725 4.53 82.62
7 0.563 3.52 86.14
8 0.529 3.31 89.45
9 0.476 2.98 92.42

10 0.375 2.35 94.77

Eigenvalues



Generalization to p-dimensions



Generalization to p-dimensions



Generalization to p-dimensions



Generalization to p-dimensions



Generalization to p-dimensions



Main issue with the components

They can’t be directly interpreted !!



Interpreting components
1 2 3

ROE 0.3842 0.0659 -0.1177

ROA 0.2159 0.1696 -0.0578

Asset Turnover -0.2729 -0.1200 0.3636

Cash Ratio 0.0538 -0.2800 0.2621

ROI -0.0765 0.3855 -0.1462

ER 0.0248 0.4879 0.2426

ROI 0.0599 0.4568 0.2497

RaROC 0.0789 0.4223 0.2278

Debt ratio 0.0305 0.5587 -0.0276

Earnings per 
share

-0.3053 0.1226 0.1145

Net present 
value

-0.3144 0.0402 -0.1067

%W -0.0886 -0.0654 -0.1171

• correlations between variables 
and the principal axes are known 
as loadings

• each element of the 
eigenvectors represents the 
contribution of a given variable 
to a component



Interpreting components
• Example using financial ratios

• Component 1: use of assets and 
control of expenses

• Component 2: availability of cash 
and capacity to pay debts

• Component3: financial health of 
the company

1 2 3

ROE 0.3842 0.0659 -0.1177

ROA 0.2159 0.1696 -0.0578

Asset Turnover -0.2729 -0.1200 0.3636

Cash Ratio 0.0538 -0.2800 0.2621

ROI -0.0765 0.3855 -0.1462

ER 0.0248 0.4879 0.2426

ROI 0.0599 0.4568 0.2497

RaROC 0.0789 0.4223 0.2278

Debt ratio 0.0305 0.5587 -0.0276

Earnings per 
share

-0.3053 0.1226 0.1145

Net present 
value

-0.3144 0.0402 -0.1067

%W -0.0886 -0.0654 -0.1171



How many axes are needed?

several tests and rules have been proposed

a common “rule of thumb” when PCA is based on correlations is 
that axes with eigenvalues > 1 are worth interpreting

Best graphical solution: k=2 (bidimensional representation)





What are the assumptions of PCA?

assumes relationships among variables are LINEAR
cloud of points in p-dimensional space has linear 
dimensions that can be effectively summarized by the 
principal axes

if the structure in the data is NONLINEAR (the cloud of 
points twists and curves its way through p-dimensional 
space), the principal axes will not be an efficient and 
informative summary of the data.



Cluster analysis

Cluster analysis was originated in anthropology 
by Driver and Kroeber in 1932 and introduced to 
psychology by Zubin in 1938 and Robert Tryon in 
1939 and used by Cattell beginning in 1943 for 
trait theory classification in personality 
psychology.

The use of big data in official statistics



Its aim is grouping a set of objects in such a way 
that objects in the same group (called a cluster) 
are in some sense similar 

It can be achieved by various algorithms that 
differ significantly, with the appropriate 
depending on the specific data set and intended 
use of the results. 

Big data and competences of a future official statistician



The notion of a "cluster" cannot be precisely 
defined, which is one of the reasons why there are so 
many clustering algorithms

“A group of data objects” (units).  



A good clustering method will produce high 
quality clusters with 

• high intra-class similarity 
• low inter-class similarity  



The quality of a clustering result depends on 
both the similarity measure used by the 
method and its implementation. 
The quality of a clustering method is also 

measured by its ability to discover hidden 
patterns



Cluster models are many, and include: Connectivity models: for example,
hierarchical clustering builds models based on distance connectivity.

• Centroid models: for example, the k-means algorithm represents each 
cluster by a single mean vector.

• Distribution models: clusters are modeled using statistical distributions, 
such as multivariate normal distributions used by the expectation-
maximization algorithm.

• Density models: for example, DBSCAN and OPTICS defines clusters as 
connected dense regions in the data space.

• Subspace models: in biclustering (also known as co-clustering or two-
mode-clustering), clusters are modeled with both cluster members and 
relevant attributes.

Cluster models

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/K-means_algorithm
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/OPTICS
https://en.wikipedia.org/wiki/Biclustering


• Group models: some algorithms do not provide a refined model for their 
results and just provide the grouping information.

• Graph-based models: a clique, that is, a subset of nodes in a graph such 
that every two nodes in the subset are connected by an edge can be 
considered as a prototypical form of cluster. Relaxations of the complete 
connectivity requirement (a fraction of the edges can be missing) are 
known as quasi-cliques, as in the HCS clustering algorithm.

• Neural models: the most well known unsupervised neural network is the 
self-organizing map and these models can usually be characterized as 
similar to one or more of the above models, and including subspace 
models when neural networks implement a form of Principal Component 
Analysis or Independent Component Analysis.

Cluster models

https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/HCS_clustering_algorithm
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Principal_Component_Analysis
https://en.wikipedia.org/wiki/Independent_Component_Analysis


To make things even more complicated, clusterings can 
be roughly distinguished as: 

• Hard clustering: each object belongs to a cluster or not
• Soft (or fuzzy) clustering: each object belongs to each 

cluster to a certain degree (for example, a likelihood of 
belonging to the cluster)



There are also finer distinctions possible, for example: 
• Strict partitioning clustering: each object belongs to exactly one 

cluster
• Strict partitioning clustering with outliers: objects can also belong to 

no cluster, and are considered outliers
• Overlapping clustering (also: alternative clustering, multi-view 

clustering): objects may belong to more than one cluster; usually 
involving hard clusters

• Subspace clustering: while an overlapping clustering, within a 
uniquely defined subspace, clusters are not expected to overlap



• Hierarchical clustering
• K-Means Clustering

Main algorithms: 



Hierarchical clustering, the idea is that objects 
are more related to nearby objects than to 
objects farther away. 

The key factor is distance. 

Hierarchical clustering



• Euclidean distance: ||a-b||2 = √(Σ(ai-bi)) 
• Squared Euclidean distance: ||a-b||2

2 = Σ((ai-bi)2) 
• Manhattan distance: ||a-b||1 = Σ|ai-bi| 
• Maximum distance:||a-b| = maxi|ai-bi| 
• Mahalanobis distance: √((a-b)T S-1 (-b))

Distances



At different distances, different clusters will form, which can 
be represented using a dendrogram, which explains where 
the common name "hierarchical clustering" comes from: 
these algorithms do not provide a single partitioning of the 
data set, but instead provide an extensive hierarchy of clusters 
that merge with each other at certain distances. 

Dendograms



Dendograms



Dendograms



Dendograms



In a dendrogram, the y-axis marks the distance at which 
the clusters merge, while the objects are placed along 
the x-axis such that the clusters don't mix. 

Connectivity-based clustering is a whole family of 
methods that differ by the way distances are computed.

Dendograms



It is hard to define “similar enough”or “good enough”–the 
answer is typically highly subjective. 



It works in 5 steps :

1. Specify the desired number of clusters K
2. Randomly assign each data point to a cluster
3. Compute cluster centroids 
4. Re-assign each point to the closest cluster centroid : 
5. Re-compute cluster centroids : Now, re-computing the centroids for the 

clusters.
6. Repeat steps 4 and 5 until no improvements are possible : Similarly, we’ll 

repeat the 4th and 5th steps until we’ll reach global optima. When there is no 
further switching of data points between two clusters , the algorithm 
terminates.

K Means Clustering





• Hierarchical clustering can’t handle big data well but K Means clustering can. 
This is because the complexity of K Means is linear i.e. O(n) while that of 
hierarchical clustering is quadratic i.e. O(n2).

• In K Means clustering, since we start with random choice of clusters, the 
results produced by running the algorithm multiple times might differ. While
results are reproducible in Hierarchical clustering.

• K Means is found to work better when the shape of the clusters is hyper 
spherical

• K Means clustering requires prior knowledge of  the number of clusters you 
want to divide your data into. But, you can stop at whatever number of 
clusters you find appropriate in hierarchical clustering by interpreting the 
dendrogram

A brief comparison



For big data, the so-called “curse of dimensionality” (when 
the dimensionality increases, the volume of the space 
increases so fast that the available data become sparse) led to 
new methods like CLIQUE and SUBCLU.



Combining the two methods



Thank you for your attention !
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